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Abstract

The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility proposed to study the nature of the “glue” that binds the
building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Labora-
tory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC can be one of the �rst
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large-scale facilities to leverage Arti�cial Intelligence (AI) during the design and R&D phases. The EIC Comprehensive Chromo-
dynamics Experiment (ECCE) is a consortium that is proposing a detector design based on a 1.5T solenoid. Herein we describe a
comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector
system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that
encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results ob-
tained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other
sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector.

Keywords: ECCE, Electron Ion Collider, Tracking, Arti�cial Intelligence, Evolutionary Algorithms, Bayesian Optimization.
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1. Introduction1

The Electron Ion Collider (EIC) [1] is a future cutting-edge2

discovery machine that will unlock the secrets of the gluonic3

force binding the building blocks of the visibile matter in the4

universe. The EIC will consist of two intersecting accelera-5

tors, one producing an intense beam of electrons and the other6

a beam of protons or heavier atomic nuclei; it will be the only7

electron-nucleus collider operating in the world. The EIC Com-8

prehensive Chromodynamics Experiment (ECCE) [2] is an in-9

ternational consortium assembled to develop a detector that can10

to o� er full energy coverage and an optimized far forward de-11

tection region. ECCE has investigated a detector design based12

on the existing BABAR 1.5T magnet; this detector will be ready13

for the beginning of EIC operations. More details on the ECCE14

detector design and what is described in the following can be15

found in [3].16

ECCE is an integrated detector that extends for about 40 m,17

and includes a central detector built around the interaction point18

and far-forward (hadron-going direction) and far-backward19

(electron-going direction) regions [1]. To ful�ll the physics20

goals of the EIC, the central detector needs to be hermetic and21

provide good particle identi�cation (PID) over a large phase22

space. The central detector itself consists of multiple sub-23

detectors: a tracking system made by inner and outer tracker24

stations allows the reconstruction of charged particles moving25

in the magnetic �eld; a system of PID sub-detectors will cover26

the barrel and the electron-going and hadron-going directions;27

electromagnetic and hadronic calorimeters are used to detect28

showers and provide complete information on the particle �ow29

which is essential for certain event topologies,e.g., those con-30

taining jets.31

As outlined in [1], Arti�cial Intelligence (AI) can provide32

dedicated strategies for complex combinatorial searches and33

can handle multi-objective problems characterized by a mul-34

tidimensional design space, allowing the identi�cation of hid-35

den correlations among the design parameters. ECCE included36

these techniques in the design work�ow during the detector37

proposal. At �rst this AI-assisted design strategy was used to38

steer the design. After the base technology is selected using39

insights provided by AI, its detector parameters can be further40

�ne-tuned using AI. During the ECCE detector proposal stage,41

the design of the detector underwent a continual optimization42

process [4].43

The article is structured as follows: in Sec. 2 we provide an44

overview of design optimization and describe the AI-assisted45

strategy; in Sec. 3 we introduce the ECCE tracker and describe46

the software stack utilized in this work to which AI is coupled47

for the optimization; in Sec. 4 we describe the implemented48

pipeline that results in a sequential strategy, fostering the in-49

terplay between the di� erent working groups in a post hoc de-50

cision making process; in Sec. 5 we present perspectives and51

planned activities.52

The ECCE detector at the EIC will be one of the �rst exam-53

ples of detectors that will be realized leveraging AI during the54

design and R&D phases.55

2. AI-assisted Detector Design56

Detector optimization with AI is anticipated to continue in57

the months following the detector proposal towards CD-2 and58

CD-3. Optimizing the design of large-scale detectors such as59

ECCE—that are made of multiple sub-detector systems—is a60

complex problem. Each sub-detector system is characterized61

by a multi-dimensional design parameter space. In addition, de-62

tector simulations are typically computationally intensive, and63

rely on advanced simulation platforms used in our community64

such as Geant4 [5] to simulate the interaction of radiation with65

matter. Additional computationally expensive steps are present66

along the data reconstruction and analysis pipeline. The soft-67

ware stack that is utilized in the detector design process in-68

volves three main steps: (i) generation of events, (ii) detector69

simulations and (iii) reconstruction and analysis.70

As pointed out in [6], the above bottlenecks render the gen-71

eration and exploration of mutliple design points cumbersome.72
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Figure 1: Work�ow of detector design assisted by AI: physics events are
injected in a detector characterized by given design parameters. Reconstructed
events are analyzed and �gures of merit are quanti�ed and passed to an AI-
based strategy, which in turn suggests the next design point in this sequential
approach; note that AI can also intervene in the simulation and reconstruction
steps.

This in turn represents an obstacle for deep learning (DL)-based73

approaches that learn the mapping between the design space74

and the functional space [7, 8, 9], which could facilitate the75

identi�cation of optimal design points. In principle fast simu-76

lations with DL can reduce the most CPU-intensive parts of the77

simulation and provide accurate results [10], although several78

design points need to be produced with Geant4 before injec-79

tion in any DL architecture. Similar considerations exist in de-80

ploying DL for reconstruction during the design optimization81

process.82

In this context, a work�ow for detector design that has gained83

popularity in recent years [11] is represented by the schematic84

in Fig. 1. It consists of a sequential AI-based strategy that85

collects information associated to previously generated design86

points, in the form of �gures of merit (calledobjectivesin the87

following) that quantify the goodness of the design, and which88

suggests promising new design points for the next iteration.89

The ECCE AI Working Group achieved a continual multi-90

objective optimization (MOO) of the tracker design. Our ap-91

proach deals with a complex optimization in a multidimen-92

sional design space (describing,e.g., geometry, mechanics, op-93

tics, etc) driven by multiple objectives that encode the detector94

performance, while satisfying several mechanical constraints.95

This framework has been developed in a way that can be easily96

extended to other sub-detectors or to a system of sub-detectors.97

The de�nition of a generic MOO problem can be formulated
as follows:

min fm(x) m = 1; � � � ; M

s:t: gj (x) � 0; j = 1; � � � ; J

hk(x) = 0; k = 1; � � � ; K

xL
i � xi � xU

i ; i = 1; � � � ; N

(1)

where one hasM objective functionsfm to optimize (e.g., detec-98

tor resolution, e� ciency, costs), subject toJ inequalitiesg j(x)99

andK equality constraintshk(z) (e.g., mechanical constraints),100

in a design space ofN dimensions (e.g., geometry parameters101

that change the Geant4 design) with lower and upper bounds on102

each dimension. Notice that overlaps in the design are checked103

Figure 2:Example of Pareto frontier in a two-dimensional objective space:
The point C is not on the frontier and is dominated by both point A and point B.
All the other points which are dominated by the Pareto frontier and that satisfy
any constraints in the optimization problem are calledfeasiblesolutions; The
hypervolume is used as a metric for convergence, and is calculated with respect
to a reference pointr.

Figure 3:The NSGA Work�ow: At time t, an o� springQ(t) is created through
a genetic algorithm [15] from anN� sized population of design pointsP(t). The
two populations are combined into an augmented population which is classi�ed
into di� erent non-dominated classesFi , starting from the �rst frontF1. To
restore the initial size of the population, the augmented space of solutions is
trimmed. A metric called crowding distance is used to reject solutions and
eventually provide an updated population of sizeN at timet + 1.

before and during the optimization and are excluded by the con-104

straints and ranges of the parameters. In solving these prob-105

lems, one can come up with a set ofnon-dominatedor trade-106

o� solutions [12], popularly known as Pareto-optimal solutions107

(see also Fig. 2).108

In this setting, we used a recently developed framework for109

MOO called pymoo [13] which supports evolutionary MOO al-110

gorithms such as Non-Dominated Sorting Genetic Algorithm111

(or NSGA-II, [14]).1 The rationale behind this choice instead112

of, for example, principled approaches such as Bayesian Opti-113

mization [11], emanates from the ECCE needs at the time of the114

detector proposal, such as the capability to quickly implement115

and run multiple parallel optimization pipelines implementing116

di� erent technology choices and the possibility of dealing with117

non-di� erentiable objectives at the exploratory stage.118

The NSGA work�ow is described in Fig. 3. The main fea-119

tures of NSGA-II are (i) the usage of an elitist principle, (ii)120

1The pymoo framework also supports other MOO approaches and a full list
is documented in [13].
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Figure 4: Flowchart of continual optimization during proposal: AI assists
the design optimization process by providing insights and capturing hidden cor-
relations among the design parameters. This has been used during the entire
detector proposal process to steer the design. At a given instant in time, N alter-
native candidate con�gurations are studied. For each we create an optimization
pipeline, which results in a Pareto front of solutions. This new information
helps steering the design: some con�gurations are rejected, while other ones
(also dubbed `new references') are identi�ed to potentially improve the design.
New optimization pipelines are de�ned inspired by the new results and the pro-
cess is iterated. During the design process, AI propelled the fundamental inter-
play between the ECCE Teams working on Physics, Detector and Computing.

an explicit diversity preserving mechanism, and (iii) ability of121

determining non-dominated solutions. The latter feature is of122

great importance for problems where objectives are of con�ict123

with each other: that is an improved performance in an objec-124

tive results in worse performance in another objective. For our125

purposes, we also tested NSGA-III which is suitable for the op-126

timization of large number of objectives [16].2
127

During the design optimization process of the tracking sys-128

tem, we used full Geant4 simulations of the entire ECCE de-129

tector. AI played a crucial role in helping choose a combination130

of technologies for the inner tracker and was used as input to131

multiple iterations of the ECCE tracker design, which led to the132

current tracker layout. This was the result of a continual opti-133

mization process that evolved in time: results were validated by134

looking at �gures of merit that do not enter as objective func-135

tions in the optimization process (more details can be found in136

Sec. Appendix B); the decision making is left post hoc and137

discussed among the Computing, Detector and Physics teams.138

A �owchart describing this continual optimization process is139

shown in Fig. 4.140

Ultimately this continual AI-assisted optimization led to a141

projective design after having extended the parametrized design142

to include the support structure of the inner tracker. The latter143

represents an ongoing R&D project that is discussed in the next144

sections.145

3. ECCE Tracking System Simulation146

The simulation and detector response shown in this docu-147

ment is based on Geant4 [17] and was carried out using the148

Fun4All framework [18, 19].149

2For � 4 objectives, NSGA-III is expected to perform better than NSGA-II.

The optimization pipelines are based on particle gun samples150

of pions, where we used� � and tested that the performance151

with � + were consistent. Performance in the electron-going di-152

rection was also checked post-hoc with particle gun samples153

of electrons. The improved performance is further validated154

with physics analyses, using the datasets generated during the155

ECCE simulation campaigns; in Sec. 4 we show in particular re-156

sults based on semi-inclusive deep inelastic scattering (SIDIS)157

events.158

The ECCE tracking detector [20], consists in di� erent layers159

in the barrel and the two end-caps, and is tightly integrated with160

the PID detectors:161

(i) The silicon vertex/tracking detector is an ALICE ITS-162

3 type high precision cylindrical/disk vertex tracker [21, 22])163

based on the new Monolithic Active Pixel Sensor (MAPS); the164

barrel detector consists of 5 MAPS layers; the silicon hadron165

endcap consists of 5 MAPS disks; and the silicon electron end-166

cap has 4 MAPS disks.167

(ii) A gas tracking system is based on� Rwell technology,168

that is a single-stage ampli�cation Micro Pattern Gaseous De-169

tector (MPGD) that is a derivative of the Gas Electron Mul-170

tiplier (GEM) technology. In ECCE� Rwell layers will form171

three barrel tracking layers further out from the beam-pipe than172

the silicon layers; namely, two inner-barrel layers and a single173

outer-barrel� Rwell layer. All � Rwell detectors will have 2D174

strip based readout. The strip pitch for all three layers will be175

400� m.176

(iii) The tracking system is completed by AC-LGAD-based177

time of �ight (TOF) detectors providing additional hit informa-178

tion for track reconstruction as well. In the central region a TOF179

(dubbed CTTL) is placed behind the high-performance DIRC180

(hpDIRC); in the hadron-going side a TOF (dubbed FTTL) is181

placed before the dual RICH (dRICH) and a� Rwell placed af-182

ter the dRICH; in the electron-going direction a� Rwell layer is183

placed before the modular RICH (mRICH), which is followed184

by a TOF later (dubbed ETTL).185

The simulation of the ECCE tracking system is shown in186

Fig. 5. An important consideration for all large-scale detectors187

is the provision of readout (power and signal cables) and other188

services (e.g., cooling). Clearly the aim is to minimize the im-189

pact of readout and services in terms of a� ecting the detector's190

acceptance or tracking resolution, for example. This e� ort is191

ongoing R&D for the project.192

In the following sections, the reader can �nd more details on193

the implementation of the optimization pipelines and utilized194

computing resources.195

4. Analysis Work�ow196

The optimization of the ECCE-tracking system [3, 20] has197

been characterized by two main phases during which the sub-198

detectors composing the tracker evolved into more advanced199

renditions.200
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Phase I optimization.3 The Geant4 implementation of the201

detectors were at �rst simpli�ed,e.g., detector modules were202

mounted on a simpli�ed conical support structure made of alu-203

minum. The optimization pipelines consisted of symmetric ar-204

rangement of detectors in the electron-going and hadron-going205

directions (5 disks on each side). The DIRC detector for PID206

in the barrel region was modelled with a simple geometry made207

by a cylinder and conical mirrors. AC-LGAD-based TOF de-208

tectors were modelled as simpli�ed silicon disks at �rst; the209

outer trackers had more �ne-grained simulations implemented,210

with realistic support structures and services implemented. The211

optimization pipelines included various combinations of detec-212

tor technologies for the inner trackers. At the end of this phase,213

a decision on the choice of the barrel technology and the disk214

technologies was made using the AI results.215

Phase II optimization.4 These pipelines had a more realistic216

implementation of the support structure incorporating cabling,217

support carbon �ber, cooling system, etc. More detailed sim-218

ulation of the PID Detectors (e.g., DIRC bars and dRICH sub-219

systems) were integrated as well as �ne-grained simulations of220

TTL layers (CTTL, ETTL, FTTL) previously simulated as sim-221

ple silicon layers modules. More stringent engineering con-222

straints were considered such as the sensor size for MAPS de-223

tector (ITS3). This phase also considered an asymmetric ar-224

rangement of the detectors in the endcap regions, with a maxi-225

mum of 4 EST disks in the electron-going end-cap and 5 FST226

disks in the hadron-going endcap: due to this asymmetric spa-227

tial arrangement, the angle subtended by detectors in the two228

endcap regions could be varied. This eventually developed into229

the idea of a projective geometry in a pipeline that character-230

izes an ongoing R&D project for optimizing the design of the231

support structure.232

A detailed description of the most recent parametrization233

used for the detector proposal can be found in Appendix A,234

along with the parametrization used in an ongoing R&D project235

to optimize the support structure of the inner tracker.236

Fig. 5 shows a comparison of the ECCE reference non-237

projective design and the projective design from the ongoing238

R&D, both of which resulted from the AI-assisted procedure239

described in this paper.240

4.1. Encoding of Design Criteria241

Design criteria need to be encoded to steer the design dur-242

ing the optimization process. For each design point we need to243

compute the corresponding objectivesfm, namely the momen-244

tum resolution, angular resolution, and Kalman �lter e� ciency.245

We will refer in the following only to the more recent Phase246

II optimization.5 Phase II has been characterized by two types247

of optimization pipelines: the �rst used a parametrization of248

the inner tracker during the optimization process and led to249

3Phase I corresponds to a timeline between June-2021 to Sept-2021. Pre-
liminary studies done between March-2021 to May-2021 are not reported here.

4Phase II corresponds to optimization pipelines that run from Sept-2021 to
Nov-2021.

5Similar considerations apply also for Phase I optimization.

the ECCE tracker non-projective design; the second branched250

o� the �rst as an independent R&D e� ort that included the251

parametrization of the support structure and led to a projective252

design.253

Details on the two types of optimization pipelines can be254

found in the following tables: Table 1 describes the main hy-255

perparameters and the dimensionality of the optimization prob-256

lem, in particular of the design space and the objective space;257

Table 2 reports the range of each design parameter6; Table 3258

summarizes the constraints for both the non-projective and pro-259

jective geometries. We also considered in our design a safe260

minimum distance between the disks of 10 cm and include a261

constraint on the di� erence between the outer and inner radii of262

each disk, namely Rout - Rin, to be a multiple of the sensor cell263

size (17.8 mm� 30.0 mm), see Table 3. These constraints are264

common to the non-projective and the projective designs. For265

more details on the parametrizations and on the corresponding266

detector performance the reader can refer to Appendix A and267

Appendix B, respectively.268

description symbol value

population size N 100
# objectives M 3

o� spring O 30
design size D 11 (9)

# calls (tot. budget) � 200

# cores � same as
o� spring

# charged� tracks Ntrk 120k
# bins in� N� 5
# bins in p Np 10

Table 1:Summary of the hyperparameters of the design optimization:the
values reported in the table have been used during the optimization of the non-
projective design of the ECCE tracker. For completeness and when they di� er
from the non-projective case, we also report in parentheses the values corre-
sponding to the ongoing R&D project for the projective design of the support
structure.

The objectives depend on the kinematics and are calculated269

in 5 main bins in pseudorapidity (� ): (i) -3.5 � � < -2.0 (cor-270

responding to the electron-going direction), (ii) -2.0� � < -1.0271

(corresponding to the transition region in electron-going direc-272

tion), (iii) -1 � � < 1 (corresponding to the central barrel), (iv) 1273

� � < 2.0 (corresponding to the transition region in the hadron-274

going direction) and (v) 2.0� � < 3.5 (corresponding to the275

hadron-going direction). The rationale behind this binning is a276

combination of di� erent aspects: the correspondence with the277

binning in the EIC Yellow Report [1], the asymmetric arrange-278

ment of detectors in electron-going and hadron-going directions279

and the division in pseudorapidity between the barrel region and280

the endcap. Particular attention is given to the transition region281

between barrel and endcaps as well as at largej� j � 3.5 close to282

the beamline.283

6The design points are normalized in the range [0-1], using a min-max scaler
xi = x(xmax � xmin) + xmin, wherexi is the normalized design point with a un-
normalized design pointx generated between the range [xmin; xmax].
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Figure 5:Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs:the two �gures show the di� erent geometry
and parametrization of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red
indicate the sub-detector systems that were optimized, while the labels in blue are the sub-detector systems that were kept �xed due to geometrical constraint. The
non-projective geometry (left) is a result of an optimization on the inner tracker layers (labeled in red) while keeping the support structure �xed, The angle made by
the support structure to the IP is �xed at about 36:5� . The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and
services on tracking resolution.

ECCE design (non-projective)
Design Parameter Range

� RWELL 1 (Inner) (r) Radius [17.0, 51.0 cm]
� RWELL 2 (Inner) (r) Radius [18.0, 51.0 cm]

EST 4zposition [-110.0, -50.0 cm]
EST 3zposition [-110.0, -40.0 cm]
EST 2zposition [-80.0, -30.0 cm]
EST 1zposition [-50.0, -20.0 cm]
FST 1zposition [20.0, 50.0 cm]
FST 2zposition [30.0, 80.0 cm]
FST 3zposition [40.0, 110.0 cm]
FST 4zposition [50.0, 125.0 cm]
FST 5zposition [60.0, 125.0 cm]

ECCE ongoing R&D (projective)
Design Parameter Range

Angle (Support Cone) [25.0� , 30.0� ]
� RWELL 1 (Inner) Radius [25.0, 45.0 cm]

ETTL zposition [-171.0, -161.0 cm]
EST 2zposition [45, 100 cm]
EST 1zposition [35, 50 cm]
FST 1zposition [35, 50 cm]
FST 2zposition [45, 100 cm]
FST 5zposition [100, 150 cm]
FTTL zpostion [156, 183 cm]

Table 2: Ranges of the design parameters:the table summarises the design
points that are optimized for the non-projective and the projective case. The
optimization range is also given for each parameter. The parameters corre-
sponding to the non-projective case were optimized sequentially over at least
three iterations, with each iteration having a set of parameters �xed. For in-
stance, the EST/FST disks were optimized during the �rst iteration assuming
symmetric design, and for the subsequent iterations the EST disks were opti-
mized further in the electron endcap region. Along with the design parameters
the design comes with geometrical constraints too. These are implemented as
strong and soft constraints in the Table 3.

sub-detector constraint description

EST/FST disks
min

( disksX

i

������
Ri

out � Ri
in

d
�

66666664
Ri

out � Ri
in

d

77777775

������

)
soft constraint: sum of residuals

in sensor coverage for disks;
sensor dimensions:d = 17.8

(30.0) mm

EST/FST disks zn+1 � zn >= 10:0 cm
strong constraint: minimum

distance between 2 consecutive
disks

sagitta layers min
( ������

2� rsagitta

w
�

$
2� rsagitta

w

%������

) soft constraint: residual in
sensor coverage for every layer;
sensor strip width:w = 17.8 mm

� RWELL rn+1 � rn >= 5:0 cm
strong constraint: minimum

distance between� Rwell barrel
layers

Table 3:Constraints in the design optimization: the table summarises con-
straints for both the projective and the non-projective designs. Soft constraints
are constraints that can be violated to a certain degree by the MOO and then one
can quantify the degree of unfeasibility (see [13]). Also, minor adjustments on
tiling up the pixels can be done post hoc optimization such that the detector
geometry is realisable. Strong constraints during the optimization designs rest
in high penalties since these constraints cannot be violated. Two additional
constraints are implicitly taken into account by internal parametrization and re-
�ected in the Geant4 design: the inner radii of the disks in the endcap and the
inner vertex layer in the barrel have to be compatible with the beam envelope
dimensions; the barrel layers lengths and the outer radii of the disks have to be
compatible with an tracking support structure [23]. Potential overlaps among
modules are checked before and during the optimization.
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